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This paper is concerned with uniform approximation of eX on the interval
[-1, +1] by (m, n)-degree rationals, Le., by rational functions whose
numerator and denominator have degree m and n, respectively. Several years
ago, Meinardus [1, p. 168] conjectured that the norm of the error function
for the best approximation is asymptotically

(1)as m + n -+ 00.
mIn!

2m +"(m + n)! (m + n + I)!

Recently, Newman [3] has proved that the degree of approximation is
indeed better than 8 times the conjectured value. Here we will establish a
lower bound by applying de la Vallee-Poussin's theorem to the rational
function constructed in [3]. We will show that the error function oscillates
n + m + 1 times by evaluating a winding number.

Let

p(z) = tOO t"(t + z)m e- t dt,
00

q(z)=fo (t-z)"tme-tdt.

Then p/q is the (m, n)-degree Pade approximant to eZ
• Following the

evaluation in [3, p. 234] we get

q(z) eZ
- p(z) = foo (t - z)" tme-t+z dt - foo t"(t + z)m e- t dt

o 0
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Hence, for Izi ~ i,
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1

Iq(z) eZ
- p(z)1 ~ Izlm+n+1 Re t (1 - uy ume(l-U)z du

1

= Izlm+n+1 f
o

(1- uYume(l-u)Rez cos[(1- u) Imz] du

.1

~ Izlm+n+1 J
o

(1- u)n umdu e- I/2 cos!

2 le- I(2lzl m+n+1 m! n!
78 (m + n + I)!

(2)

Observe that this is just 7j(8e) times the upper bound for Iqe Z
- pi given in

[3].
Next, an upper bound for q(z). Izl ~!, is derived:

,00

Iq(z)1 ~ t (t +!y tme- t dt

.00

~el/2J (t+Dn+m e-t-I/2dt
-1/2

By combining (2) and (3) we get

Z 7 2 -m-nm! n!
Ie - p(z)jq(z)1 ~ 16e (m + n)! (m + n + I)!' Izi =!.

(3)

(4)

Given x E [-1, +1], put z = (x + iy)j2 with x 2+ y2 = 1. Obviously,
eX = eZez. The crucial point is Newman's detection that R(x) =
p(z)p(z)j[q(i)q(z)] is an (m,n)-degree rational function in the variable x.

Put a = eZ, b =p(z)jq(z). Then the error eX - R(x) is just iia - bb. It will
be treated by using the formula

iia-bb=2 Reii(a-b)-la-bI2,

From (4) we get the estimate for the first term

a, b E C. (5)

7 2 -m-n , ,

lei[e
z

- pjq]1 ~ 16e 3/ 2 (m + n)! (m': ;'+ I)!' Izi =i· (6)
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Denote by arg w the argument of the complex number w. Then
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arg{eZ[eZ- p(z)jq(z)]} = arg{e-Z[eZ- p(z)jq(z)]}

=arg l;(~~ [q(z)eZ-p(z)]!. (7)

For short, let h(z) denote the function within the braces in (7).
Since pjq is the Pade approximation, z = 0 is a zero of qeZ- p of

multiplicity n + m + 1. Moreover, q(z)"* 0 for Iz I ,,;;;! is easily checked with
the techniques in [3, p. 235]. Consequently, h has the winding number
n + m + 1 for the circle Iz I= !. Hence, when an entire circuit has been
completed, arg(h(z» is increased by (n + m + 1) 2n. The argument is
increased by (n + m + l)n as z traverses the upper half of the circle, because
h(x) is real for x on the real line. It follows by the same arguments as in [1,
pp. 38-39] that h attains real values on n +m + 2 points Zk = (xk+ iYk)j2
with +1 = XI > X 2 > ... > x n + m+ 2 = -1 and that the sign changes between
any pair of consecutive x's. The same is true for eZ[eZ- pjq]. Referring to
(5) we have

min IeZkeZk - p(ik) P(Zk) I
I (k(n+m+2 p(ik) q(Zk)

> min 21eZ[eZ- p(z)jq(z)]I- max lez
- p(z)jq(zW

Izi = 1/2 Izi = 1/2

7 2 -m-nm! n! l const!
2 -- 1 - ....,...."....,....,,-,--------
7 8e3

/
2 (m + n)! (m + n + I)! 2m + n (m + n + I)!

(8)

From the theorem of de la Vallee-Poussin [1, p. 147] it is known that the
expression in (8) is a lower bound for the distance of eX from the (m, n)­
degree rational functions. The gap between the upper bound in [2] and the
lower bound is roughly a factor e5

/
2j[ (2 - e1/2) cos!] <40.

If m = n, one gets better estimates for the constants from the result in [2].
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